EFECTO HALL

P7.2.1.1

Estudio del efecto Hall en plata

P7.2.1.2

Estudio del efecto Hall anómalo en wolframio

Estudio del efecto Hall en plata (P7.2.1.1)

N° de cat.	Descripción	P7.2.1.1	P7.2.1.2
586 81	Aparato para el efecto Hall (plata)	1	
524 005W2	Mobile-CASSY 2 wifi	1	
524 0381	Sonda B multiuso S	1	1
501 11	Cable de extensión, 15 polos	1	1
524 0401	Sensor de μV S	1	1
521 551	Fuente de alimentación de corriente alterna / corriente continua 0 24 V / 0 10 A	1	1
726 890	Fuente de alimentación de gran amperaje de CC 132 V/020 A	1	1
562 11	Núcleo en forma de U con yugo	1	1
560 31	Par de zapatos polares perforados	1	1
562 13	Bobina de 250 espiras	2	2
300 41	Varilla de soporte, 25 cm, 12 mm Ø	1	1
301 01	Mordaza múltiple LEYBOLD	1	1
300 02	Base de trípode en forma de V, pequeño	1	1
500 442	Cable de experimentacion 100 cm azul	1	1
501 46	Par de cables 100 cm, rojo/azul	2	2
501 33	Cable de experimentación, 100 cm, negro	2	2
586 84	Aparato para el efecto de Hall (tungsteno)		1

En conductores o semiconductores eléctricos que se encuentran en un campo magnético *B* y por los cuales fluye una corriente / perpendicular al campo magnético se genera una tensión eléctrica debido al efecto Hall:

$$U_{\rm H} = R_{\rm H} \cdot B \cdot I \cdot \frac{1}{d}$$
 d: espesor de la muestra

La constante de Hall

$$R_{\rm H} = \frac{1}{e} \cdot \frac{p \cdot \mu_{\rm p}^2 - n \cdot \mu_{\rm n}^2}{\left(p \cdot \mu_{\rm p} + n \cdot \mu_{\rm n}\right)^2} \quad \text{e: carga elemental}$$

depende de las concentraciones n y p de los electrones y huecos, así como de las movilidades μ_n y μ_p y por ello es un parámetro que depende del material y de la temperatura.

En los experimentos P7.2.1.1 y P7.2.1.2 se determinan la constante de Hall $R_{\rm H}$ de dos conductores eléctricos mediante la medición de la tensión de Hall $U_{\rm H}$ en función del campo magnético B para diferentes corrientes I. Para la constante de Hall en plata se obtiene un valor negativo, de lo que se deduce que el transporte de cargas se debe a los electrones. La constante de Hall del wolframio es positiva, esto es, los responsables de la conducción son los huecos.